Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

نویسندگان

  • S F El-Amin
  • H H Lu
  • Y Khan
  • J Burems
  • J Mitchell
  • R S Tuan
  • C T Laurencin
چکیده

The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal organization than on PLA and TCPS. We propose that this difference in ECM composition is functionally related to the enhanced cell adhesion observed on PLAGA. There is initial evidence that specific composition of the PLAGA polymer favors the ECM. Future studies will seek to optimize ECM production on these matrices for bone tissue engineering applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Culturing of Human Jaw Osteoblasts in PLLA/HA Scaffold

Background & Aims: Tissue engineering using somatic cells and synthetic extracellular matrix (scaffold) represents a new approach for regeneration of mineralized tissue and bone. This study was carried out to investigate the ability of a PLLA/HA scaffold to culture osteoblast cells in a three dimensional milieu. Method: Three bony samples were taken from extraction sites during surgical extract...

متن کامل

The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line.

There is a clear need for the development of microparticles that can be used simultaneously as carriers of stem/progenitor cells and as release systems for bioactive agents, such as growth factors or differentiation agents. In addition, when thinking on bone-tissue-engineering applications, it would be very useful if these microparticles are biodegradable and could be made to be bioactive. Micr...

متن کامل

Functionalized synthetic biodegradable polymer scaffolds for tissue engineering.

Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds.

Bone regeneration is based on the hypothesis that healthy progenitor cells, either recruited or delivered to an injured site, can ultimately regenerate lost or damaged tissue. Three-dimensional porous polymer scaffolds may enhance bone regeneration by creating and maintaining a space that facilitates progenitor cell migration, proliferation, and differentiation. As an initial step to test this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 24 7  شماره 

صفحات  -

تاریخ انتشار 2003